Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase.

نویسندگان

  • T Gudi
  • G K Hong
  • A B Vaandrager
  • S M Lohmann
  • R B Pilz
چکیده

Nitric oxide (NO) and cGMP have been implicated in many neuronal functions, including regulation of gene expression, but little is known about the downstream targets of NO/cGMP in the nervous system. We found that type II cGMP-dependent protein kinase (G-kinase), which is widely expressed in the brain, mediated NO- and cGMP-induced activation of the fos promoter in cells of neuronal and glial origin; the enzyme was ineffective in regulating gene expression in fibroblast-like cells. The effect of G-kinase II on gene expression did not require calcium uptake but was synergistically enhanced by calcium. G-kinase II was membrane associated and did not translocate to the nucleus; however, a soluble G-kinase II mutant translocated to the nucleus and regulated gene expression in fibroblast-like cells. Soluble G-kinase I also regulates fos promoter activity, but membrane targeting of G-kinase I prevented the enzyme from translocating to the nucleus and regulating transcription in multiple cell types, including glioma cells; this suggests that cell type-specific factor(s) that mediate the transcriptional effects of extranuclear G-kinase II are not regulated by G-kinase I. Our results suggest that G-kinase I and II control gene expression by different mechanisms and that NO effects on neuronal plasticity may involve G-kinase II regulation of gene expression.-Gudi, T., Hong, G. K.-P., Vaandrager, A. B., Lohmann, S. M., Pilz, R. B. Nitric oxide and cGMP regulate gene expression in neuronal and glial cells by activating type II cGMP-dependent protein kinase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide regulates cyclic GMP-dependent protein kinase phosphorylation in rat brain.

Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exog...

متن کامل

Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression.

cGMP is a second messenger that produces its effects by interacting with intracellular receptor proteins. In smooth muscle cells, one of the major receptors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG). PKG has been shown to catalyze the phosphorylation of a number of physiologically relevant proteins whose function it is to regulate the contractile activ...

متن کامل

Signal Transduction in Smooth Muscle Invited Review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression

Lincoln, Thomas M., Nupur Dey, and Hassan Sellak. Invited Review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91: 1421–1430, 2001.—cGMP is a second messenger that produces its effects by interacting with intracellular receptor proteins. In smooth muscle cells, one of the major receptors for cGMP is the serin...

متن کامل

A role for cGMP-dependent protein kinase II in AMPA receptor trafficking and synaptic plasticity

Regulated trafficking of AMPA receptors (AMPARs) is an important mechanism that underlies the activity-dependent modification of synaptic strength. Trafficking of AMPARs is regulated by specific interactions of their subunits with other proteins. Recently, we have reported that the AMPAR subunit GluR1 binds the cGMP-dependent kinase type II (cGKII) adjacent to the kinase catalytic site, and tha...

متن کامل

Neural Activity-Dependent Regulation of Radial Glial Filopodial Motility Is Mediated by Glial cGMP-Dependent Protein Kinase 1 and Contributes to Synapse Maturation in the Developing Visual System.

UNLABELLED Radial glia in the developing optic tectum extend highly dynamic filopodial protrusions within the tectal neuropil, the motility of which has previously been shown to be sensitive to neural activity and nitric oxide (NO) release. Using in vivo two-photon microscopy, we performed time-lapse imaging of radial glial cells and measured filopodial motility in the intact albino Xenopus lae...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 13 15  شماره 

صفحات  -

تاریخ انتشار 1999